一种土壤湿度检测的方法和电路设计
摘 要: 土壤湿度检测是自动灌溉控制系统中的一个关键因素。通过恒流源作用下的土壤探针试验,得到能够反应土壤湿度变化趋势的电阻和电容组合模型。根据该模型指出土壤湿度的信号采样应该是尽量接近瞬态过程的初始值,并设计了检测电路,实现湿度?脉冲宽度的转换,利用捕捉脉冲宽度的方法能够精确得到湿度值,同时针对湿度变化非线性曲线给出了自动控制系统中的检测控制策略,经过实际试验,设计的控制系统具有良好的稳定型和区分精度。
关键词: 土壤湿度检测; 组容模型; 检测电路设计; 控制策略
中图分类号: TN78?34; TP29 文献标识码: A 文章编号: 1004?373X(2013)08?0125?03
土壤湿度,又称土壤含水率,是植物生长的一个重要影响因素,在园林花卉、蔬菜大棚等自动灌溉控制系统中,土壤湿度检测准确和稳定是控制系统成功的关键。现有的土壤湿度测定方法基本都属于电信号测量方式,即土壤作为载体通过电信号时,电信号的特性发生一定的改变。但实际土壤的结构和成分非常复杂,土壤是固相、液相、气相共同组成的物质[1],这些物质处于一种微弱的平衡之中。当探测头插入土壤或电信号通过时,土壤中的平衡被改变,从而使得测量的准确性和稳定度较差。如何在测量过程中能够保证稳定性和精度,是电信号测量土壤湿度的关键问题。
1 恒流源作用下土壤湿度模型
设计试验土壤湿度检测的结构如图1,采用直径约 1 mm,长100 mm的不锈钢针作为土壤探针,探针间距离100 mm。当控制开关开通时,恒流源输出稳定电流(0.5 mA),通过土壤在两根探针间输出电压波形,得到图2中的电压瞬态变化曲线。如果测量不同湿度的土壤就可以得到图2的曲线簇。
从图2中可以得出以下结论:
(1)在恒流源作用下土壤湿度越大,输出电压波形的瞬态过程越长,输出电压幅度变化越大。
(2)在恒流源作用下不同土壤湿度情况下,当达到新的平衡时,输出电压的大小趋向数值相同。
(3)在恒流源作用下瞬态过程中土壤湿度越大,输出电压的初始值越小;土壤湿度越小,输出电压的初始值越大。
理论上土壤湿度检测的电学模型可以用一个阻容网络进行模拟[2],在恒流源作用下常用的阻容电路(如图3所示)很难解释上述的结论,因此将电学模型修改为如图4的阻容模型电路来进行解释。
结合上述结论,对于图4的阻容等效网络在恒流源作用下可以得出:
(1)输出电压波形符合电容充电的曲线趋势;
(2)由于不同湿度时,输出电压在一定时间稳定后趋向数值一致,可知R0在不同的土壤湿度时基本变化很小;
(3)土壤湿度越大,输出电压的初始值越小,由于电容通电“瞬间”导通的原理,可知R1随着土壤湿度的增加而减小;
(4)土壤湿度越大,输出电压波形的瞬态过程越长,可知C随着土壤湿度的增加而增加,而且R1C也增大。
从阻容等效网络的物理意义上讲,可以认为R0代表了土壤样本的结构和基本成分,具有一定的稳定性;R1代表了土壤固相、液相和气相的物理变化,当湿度变化时,三者的比例发生变化,其导电性能变化;C代表土壤的电化学反应,当湿度变化时电解质的活跃程度变化,同时电流输入时,将会产生一些电解反应。
2 土壤湿度检测电路设计
从恒流源土壤湿度检测的分析可知,在实际信号采样中当电流输入后输出信号到达基本稳定时,其检测结果很难反应出湿度的区别,同时电流的输入打破了土壤的微弱平衡,其特性可能会发生变化,造成信号自身对测量的干扰。因此信号的采样应该位于输出电压曲线的初始值附近,才能准确反应土壤湿度的变化,同时由于电流作用时间短,电解反应的干扰基本不会出现。
实际采样电路如图5所示,在恒流源开通时,利用标准锯齿波电压与土壤探针输出电压在运放组成的比较电路中产生矩形脉冲,通过斯密特触发电路整形后进行脉宽捕捉和检测[3],得到代表此时输出电压大小的矩形波脉宽,得到数据后系统立刻关闭脉宽捕捉功能和恒流源。
从理论上,锯齿波的频率越高,系统所捕捉的第一个脉宽越接近探针输出电压的初始值。实际上由于在较小恒流源电流作用下,输出电压波形的稳定时间基本都在100 ms以上,因此在实际使用中综合系统捕捉脉宽软件的技术实现可设计锯齿波的频率100 Hz以上即可。在实际制作中金属探针插入泥土后,对于泥土会产生一定扰动,土壤中的自由离子向金属表面运动,影响检测准确性。因此为了保证测试的稳定性,探针的金属表面与土壤接触不能太大,同时为了保证探针的插入深度,可采用绝缘材料包裹金属探针的方式[4] ,金属探针露出与土壤直接接触的针长短在1~1.5 cm为宜。测试时应先将探针插入土壤后一定时间(10~15 min)后进行。
图6显示实际制作的电路(锯齿波频率为100 Hz)在土壤湿度增加时脉冲宽度的变化情况,其湿度?脉冲宽度曲线具有函数单调性。图7为同一湿度下不同时间段脉冲宽度变化,其稳定性较好。
3 基于土壤湿度检测的控制系统策略
由于同一土壤在不同湿度时其检测数据曲线具有一定非线性,为了提高检测的精度,控制系统CPU(单片机等)可以采用分段线性拟合的方法来实现较高的检测精度[5?8](见图8)。
在系统工作之前,先利用样本土壤进行湿度数值预置,如5%,10%,15%,…,控制系统利用这些样本检测到的脉宽数值进行分段线性拟合曲线,生成分段脉宽?湿度函数。在实际测量时,将检测到的脉宽数据对应相应区间函数进行运算,即可得到相应的土壤湿度值。同时由于实际上土壤的湿度变化不会很快,因此可采用定期采样(间隔几分钟左右)的方式来进行工作。
在测量不同土壤时,应先清除原有预置值,重新进行样本土壤湿度预置,生成新的分段脉宽?湿度函数进行工作。
4 结 语
本文所建立的恒流源作用下土壤湿度电学模型较好地表现了土壤湿度变化时探针阻抗变化的特性趋势,根据本文设计电路和控制策略制作的土壤湿度检测自动控制系统,经过在农业蔬菜大棚自动浇灌控制系统[9]和阳台花园自动浇灌控制系统中的应用和实践,土壤湿度检测稳定度和区分度比较良好。由于土壤的结构非常复杂,成分之间的相互反应多种多样,土壤中的微弱平衡很容易受到外界的干扰(如温度变化等)[10],如何提高抗干扰还有待进一步深入研究。
参考文献
[1] AMATO M, RITCHIE J T. Small Spatial scale soil water content measurement with time domain reflectmetry [J]. Soil Science Society of America Journal 1995, 59(2): 21?26.
[2] SCHMUGGE T J, JACKSON T J, MCKIM H L. Surver of methods for soil moisture determination [J]. Water Resources Research, 1980, 16(6): 961?979.
[3] 白泽生.土壤水分检测转换电路的设计[J].传感器与微系统,2006(9):16?18.
[4] 马孝义.电容式土壤水分传感器的研制[J].传感器技术,1993(1):4?8.
[5] 赵燕东.基于驻波率原理的土壤水分传感器的测量敏感度分析[J].农业工程学报,2002(18):2?5.
[6] 甘露萍.一种土壤湿度传感器的研制[J].农机化研究,2008(10):91?94.
[7] 曹琳琳.单片机原理及接口技术[M].长沙:国防科技大学出版社,2008.
[8] 张泽卉.基于GSM短信和无线高频通信的灌溉自动控制系统[J].节水灌溉,2008(1):33?37.
[9] 胡彦福.草花育苗大棚定时灌溉系统研制[J].节水灌溉,2007(5):30?32.
[10] 陈季丹.电解质物理学[M].北京:机械工业出版社,1982.