首页 文学文摘 时政新闻 科技科普 经济法律 健康生活 管理财经 教育教学 文化艺术 社科历史

基于人工神经网络的移动机器人路径规划研究

作者:陈鸿旭 来源:电子技术与软件工程


  摘要 随着移动机器人的发展,其已经在多个领域得到了广泛的普及和应用,成为导航技术的重要组成部分。移动机器人路径规划已经成为应用的最重要的难点之一,本文详细的介绍了人工神经网络算法在移动机器人路径规划过程常用的算法,并且对其应用进行了展望,以便能够为路径规划做出参考。
  【关键词】人工神经网络 路径规划 移动机器人
  1 引言
  在移动机器人导航技术应用过程中,路径规划是一种必不可少的算法,路径规划要求机器人可以自己判定障碍物,以便自主决定路径,能够避开障碍物,自主路径规划可以自动的要求移动机器人能够安全实现智能化移动的标志,通常而言,机器人选择的路径包括很多个,因此,在路径最短、使用时间最短、消耗的能量最少等预定的准则下,能够选择一条最优化的路径,成为许多计算机学者研究的热点和难点。
  2 背景知识
  神经网络模拟生物进化思维,具有独特的结构神经元反馈机制,其具有分布式信息存储、自适应学习、并行计算和容错能力较强的特点,以其独特的结构和信息处理方法,在自动化控制、组合优化领域得到了广泛的应用,尤其是大规模网络数据分析和态势预测中,神经网络能够建立一个良好的分类学习模型,并且在学习过程中优化每一层的神经元和神经元连接的每一个节点。1993年,Banta等将神经网络应用于移动机器人路径规划过程中,近年来,得到了广泛的研究和发展,morcaso等人构建利用一个能够实现自组织的神经网络实现机器人导航的功能,并且可以通过传感器训练网络,取得更好的发展,确定系统的最佳路径。神经网络拓扑结构模型可以分为:
  2.1 前向网络
  网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。
  2.2 反馈网络
  网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。
  3 基于人工神经网络的移动机器人路径规划算法
  神经网络解决移动机器人路径规划的思路是:使用神经网络算法能够描述机器人移动环境的各种约束,计算碰撞函数,该算法能够将迭代路径点集作为碰撞能量函数和距离函数的和当做算法需要优化的目标函数,通过求解优化函数,能够确定点集,实现路径最优规划。神经网络算法在移动机器人路径规划过程中的算法如下:
  (1)神将网络算法能够初始化神经网络中的所有神经元为零,确定目标点位置的神经元活性值,并且能够神经网络每层的神经元连接将神经元的值传播到出发点;
  (2)动态优化神经网络,根据神经网络的目标节点和障碍物的具体位置信息,在神经网络拓扑结构中的映射中产生神经元的外部输入;
  (3)确定目标值附件的神经元活性值,并且使用局部侧的各个神经元之间,连接整个神经网络,并且在各个神经元中进行传播。
  (4)利用爬山法搜索当前邻域内活性值最大的神经元,如果邻域内的神经元活性值都不大于当前神经元的活性值,则机器人保持在原处不动;否则下一个位置的神经元为邻域内具有最大活性值的神经元。
  (5)如果机器人到达目标点则路径规划过程结束,否则转步骤(2)。
  4 基于人工神经网络的移动机器人路径规划技术展望
  未来时间内,人工神经在机器人路径规划过程中的应用主要发展方向包括以下几个方面:
  4.1 与信息论相融合,确定神经网络的最优化化目标解
  在神经网络应用过程中,由于经验值较为难以确定,因此在神经网络的应用过程中,将神经网络看做是一个贝叶斯网络,根据贝叶斯网络含有的信息熵,确定神经网络的目标函数的最优解,以便更好的判断机器人移动的最佳路径。
  4.2 与遗传算法想结合,确定全局最优解
  将神经网络和遗传算法结合起来,其可以将机器人的移动环境设置为一个二维的环境,障碍物的数目、位置和形状是任意的,路径规划可以由二维工作空间一系列的基本点构成,神经网络决定机器人的运动控制规则,利用相关的神经元的传感器作用获未知环境的情况,将障碍信息和目标点之间的距离作为神经网络的输入信息,使用遗传算法完成神经网络的权值训练,神经网络的输出作为移动机器人的运动作用力,实现一个可以在未知环境中进行的机器人运动路径规划。
  4.3 与蚁群算法相结合,降低搜索空间,提高路径规划准确性
  为了提高神经网络的搜索准确性和提高效率,可以将蚁群算法与神经网络相互结合,蚁群算法的路径规划方法首先采用栅格法对机器人工作环境进行建模,然后将机器人出发点作为蚁巢位置,路径规划最终目标点作为蚁群食物源,通过蚂蚁间相互协作找到一条避开障碍物的最优机器人移动路径。
  5 结语
  随着移动机器人技术的发展,路径规划作为最重要的一个组成部分,其得到了许多的应用和发展,其在导航过程中,也引入了许多先进的算法,比如神经网络,更加优化了移动的路径。未来时间内,随着神经网络技术的改进,可以引入遗传算法、信息论、蚁群算法等,将这些算法优势结合,将会是路径规划更加准确和精确。
  
  参考文献
  [1]朱大奇,颜明重,滕蓉. 移动机器人路径规划技术综述[J].控制与决策,2010,25(7): 961-967.
  [2]刘毅.移动机器人路径规划中的仿真研究[J].计算机仿真,2011,28(6): 227-230.
  [3]熊开封,张华.基于改进型 FNN 的移动机器人未知环境路径规划[J].制造业自动化,2013,35(22): 1-4.
  [4]柳长安,鄢小虎,刘春阳.基于改进蚁群算法的移动机器人动态路径规划方法[J].电子学报,2011,39(5).
  [5]范浩锋,刘俊.基于 BP 神经网络的红外目标识别技术[J].计算机与数字工程,2013,41(4): 559-560.
  
  作者单位
  重庆邮电大学计算机科学与技术学院重庆市400065