贯彻应用意识的初中数学建模教学
摘要:应用数学知识去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。
关键词:贯彻;应用意识;初中数学
一、什么是数学建模?
所谓数学建模就是把所要研究的实验问题,通过数学抽象构造出相应的数学模型,再通过数学模型的研究,使原问题获得解决的过程。其基本思路是:
二、贯彻应用意识的数学建模教学环节
数学素养教育的主战场是课堂,如何围绕课堂教学选取典型素材激发学生兴趣,以润物细无声的形式渗透数学建模思想,提高建模能力呢?根据我们的实践,采用知识的发生、形成过程与应用相渗透的教学模式可以实现这个目标,以“问题情景----建立模型----解释、应用与拓展”的基本叙述方式,使学生在朴素的问题情景中,通过观察、操作、思考、交流和运用中,掌握重要的现代数学观念和数学的思想方法,逐步形成良好的数学思维习惯,强化运用意识。这种教学模式要求教师以建模的视角来对待和处理教学内容,把基础数学知识学习与应用结合起来,使之符合“具体----抽象----具体”的认识规律。
其五个基本环节是:
1创设问题情景,激发求知欲
根据具体的教学内容,从学生的生活经验和已有的知识背景出发,选编合适的实际应用题,让学生带着问题在迫切要求下学习,为知识的形成做好情感上的准备,并提供给学生充分进行数学实践活动和交流的机会。
2.抽象概括,建立模型,導入学习课题
通过学生的实践、交流,发表见解,搜集、整理、描述,抽象其本质,概括为我们需要学习的课题,渗透建模意识,介绍建模方法,学生应是这一过程的主体,教师适时启发,介绍观察、实验、猜测、矫正与调控等合情推理模式,成为学生学习数学的组织者、引导者、合作者与共同研究者。
3研究模型,形成数学知识
对所建立的模型,灵活运用启发式、尝试指导法等教学方法,以教师为主导,学生为主体完成课题学习,形成数学知识、思想和方法,并获得新的数学活动经验。
4解决实际应用问题,享受成功喜悦
用课题学习中形成的数学知识解答开始提出的实际应用题。问题得以解决,学生能体会到数学在解决问题时的实际应用价值,体验到所学知识的用途和益处,成功的喜悦油然而生。
5归纳总结,深化目标
根据教学目标,指导学生归纳总结,拓展知识的一般结论,指出这些知识和技能在整体中的相互关系和结构上的统一性,使学生认识新问题,同化新知识,并构建自己的智力系统。同时体会和掌握构建数学模型的方法,深化教学目标。此外,通过解决我国当前亟待解决的紧迫问题,引导学生关心社会发展,有利于培养学生的主体意识与参与意识,发挥数学的社会化功能。、
三、选择适当的数学问题,渗透数学建模思想
教师要建立以人为本的学生主体观,要为学生提供一个学数学、做数学、用数学的环境和表达自己想法的机会,在教学中注意对原始问题进行数学加工。教师要为学生提供充足的自学时间,使学生在亲历的过程中展开思维,收集、处理各种信息,不断追求新知,发现、提出、分析并创造性地解决问题。数学建模学习应该成为再发现、再创造的过程,教学过程中要珍惜学生的创新成果和失败教训,使他们保持尝试的热情。
从课本中的数学出发,注重对课本原题的改变
对课本中出现的应用问题,可以改变设问方式、变换题设条件,互换条件结论,形成新的数学建模应用问题;对课本中的纯数学问题,可以依照科学性、现实性、新颖性、趣味性、可行性等原则,编拟出有实际背景或有一定应用价值的建模应用问题。
数学建模中的实际问题背景更加复杂,解答具有更大的综合性和多样性,而结论还需要进行检验和优化,带有更大的挑战性和创造性。数学建模的教学使学生走出课本,走出传统的习题演练;使他们进入生活、生产的实际中,进入一个更加开放的天地;使学生体会到数学的由来、数学的应用,体验到一个充满生命活力的教学,这对于培养学生应用意识和创造精神显然是一个很好的途径。
2.从生活中的数学问题出发,强化应用意识
日常生活是应用问题的源泉之一,现实生活中有许多问题可通过建立数学教学模型加以解决,如合理负担出租车资、家庭日用电量的计算、红绿灯管制的设计、登楼方案、住房问题、投掷问题等,都可用基础数学知识建立初等教学模型,加以解决。学生很喜欢解决这样的实际问题,只要结合数学课程内容,适时引导学生考虑生活中的数学,就会加深学生对数学知识的理解,增强应用数学的信心,获得必要的应用技能。
对于某些实际问题,可以通过建立合理的数学模型作为桥梁来解决,对于相同类型的问题,采用相同的数学模型,使学生的思维过程形象化、公式化。这样,学生学起来不感到抽象、难懂,并能增强记忆和理解,容易被学生所接受。
3.以社会热点问题出发,介绍建模方法
国家大事、社会热点、市场经济等,是初中数学建模教学的好素材,适当地选取,融入教学活动中,使学生掌握相关类型的建模方法,不但可以使学生树立正确的商品经济观念,而且还为日后能主动以数学的意识、方法、手段处理问题提供了条件。
纵观近年来全国各地中考试题中考查学生解决实际问题能力的试题,需经抽象、转化建模的可谓五彩缤纷,争奇斗艳。学生通过建模求解,体会到了科学、正确决策的意义和作用,也体会到了正确的决策离不开数学。
虽然数学建模的目的是为了解决实际问题,但对于中学生来说,进行数学建模教学的主要目的并不是要他们去解决生产、生活中的实际问题,而是要培养他们的数学应用意识,掌握数学建模的方法,为将来的工作打下坚实的基础.因此,在教学时,授之以渔,尤其注重培养学生从初看起来杂乱无章的现象中抽象出恰当的数学问题的能力,即培养学生把客观事物的原型与抽象的数学模型联系起的能力。
总而言之,应用数学知识去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。数学建模教学的本身是一个不断探索、不断创新、不断完善和提高的过程。